
Hybrid Differentiation Strategies for Simulation and
Analysis of Applications in C++
ROSCOE A. BARTLETT
BART G. VAN BLOEMEN WAANDERS
Sandia National Laboratories, Albuquerque NM 87185 USA
MARTIN BERGGREN
Department of Information Technology
Uppsala University, Sweden

Computationally efficient and accurate derivatives are important to the success of many different
types of numerical methods. Automatic differentation (AD) approaches compute truncation-free
derivatives and can be efficient in many cases. Although present AD tools can provide a con-
venient implementation mechanism, the computational efficiency rarely compares to analytically
derived versions that have been carefully implemented. The focus of this work is to combine the
strength of these methods into a hybrid strategy that attempts to achieve an optimal balance
of implementation and computational efficiency by selecting the appropriate components of the
target algorithms for AD and analytical derivation. Although several AD approaches can be con-
sidered, our focus is on the use of template overloading forward AD tools in C++ applications.
We demonstrate this hybrid strategy for a system of partial differential equations in gas dynamics.
These methods apply however to other systems of differentiable equations, including DAEs and
ODEs.

Categories and Subject Descriptors: G.1.0 [Numerical analysis]: General; G.1.4 [Numerical Analysis]: Quadratic and Numer-
ical Differentiation - Automatic Differentiation; D.1.0 [Programming Techniques]: General; G.4 [Mathematical Software]:
Efficiency

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Hybrid Differentiation Methods, Euler equations, automatic
differentiation, finite volume methods, template overloading

1. INTRODUCTION

The derivative calculation represents a fundamental component in simulation and analysis codes. Al-
though the differentiation of elementary operations is straightforward, multivariate derivative calcula-
tions in complicated algorithms can be time consuming to analytically derive and error-prone to im-
plement. There are many approaches available to implement derivative calculations, including sym-
bolic methods, finite differences, complex step, and automatic differentiation (AD). An appropriate
calculation strategy depends on implementation issues, accuracy requirements, and the importance of
computational efficiency.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States De-
partment of Energy under Contract DE-AC04-94AL85000.
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use provided that
the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server notice, the title of the
publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2007 ACM 0098-3500/2007/1200-0001 $5.00

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007, Pages 1–25.

2 · Roscoe Bartlett et al.

Symbolically derived analytical code can provide the most efficient results, but can be time-consuming
to derive, especially for codes simulating complex physics. Furthermore, the implementation can be
difficult and error prone. Finite-difference approximations are simpler to implement but result in less
accurate derivative values. The selection of the perturbation step size is one of the fundamental prob-
lems associated with finite differencing and is difficult to perform a priori. The complex step approach
is a potentially implementation-efficient approach with results accurate to machine precision in most
cases. Even though the implementation is relatively straightforward, the disadvantage of adding a com-
plex data type is in the redundancy of certain computations.

Automatic differentiation can potentially provide the optimal combination of accuracy, implementa-
tion simplicity, and computational efficiency. Significant work has been done on tools that use source
transformation [Bischof et al. 1997], [Bischof et al. 1992], [Giering and Kaminski 1998], [Faure 2005],
[Hascoet 2004] and these tools can be very effective as a general or initial approach to calculating
derivatives. The standard source transformation tools are somewhat sensitive to simulation code imple-
mentations and can make for a cumbersome development environment because of separate recompila-
tions to calculate the appropriate derivative values of new functions. An alternative strategy for apply-
ing AD in C++ based codes is to template the functions on the scalar type which can be instantiated on
double or Fad<double> for instance. The template instantiation strategy provides a mechanism to
implement AD at various levels of complexity. This removes certain code maintenance issues, provides
machine precision derivative calculations, and most importantly provides an easy mechanism to control
the level of intrusiveness of the AD calculation, which has implications to implementation effort and
computational efficiency.

Even the most efficient AD implementations can not be faster than codes using optimized symbol-
ically derived expressions. For large and complex simulation software a balance must be achieved
between implementation, computational efficiency and accuracy. Our strategy is to consider a hybrid
methodology driven by the complexities associated with symbolic derivations. The subject of this paper
is the use of hybrid strategies involving the application of AD at various levels of functional complex-
ity. We present the application of hybrid approaches to a relatively complicated function evaluation that
discretizes systems of partial differentiable equations (PDEs). However, other models can also be con-
sidered such as solving differential-algebraic equations (DAEs) based network simulators. Although we
demonstrate certain derivative calculation strategies using a specific example from compressible fluid
dynamics, most of the statements and conclusions presented in this work are general and can be applied
to a range of functions and numerical algorithms. The primary contribution of this work is the devel-
opment of hybrid strategies that combine automatic and symbolic differentiation for complex functions
to optimize the trade-off between implementation effort and the need for computational efficiency.

The remainder of this paper is organized as follows. Background information for various methods
to differentiate ANSI C++ code is provided in section 2. Section 3 presents an overview of a large
class of application areas where large-scale functions are assembled from a set of mostly independent
“element” computations. This section uses the term “element” in the broadest sense and can be applied
to PDE simulators as well as other types of models. A series of different levels of hybrid symbolic/AD
methods for differentiation is defined. Section 4 provides a particular example using compressible flow
equations and presents numerical results that compare and contrast many of the different differentiation
approaches. Finally, in Section 5 we offer a number of conclusions and observations.

2. BACKGROUND

We focus on the differentiation of vector functions of the form

f(x) ∈ IRn → IRm (1)
ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

Hybrid Differentiation Strategies in C++ · 3

where it is assumed that f(x) is at least once continuously differentiable. Many different types of
numerical algorithms, such as linear solvers, nonlinear solvers, and optimization methods, require the
application of the Jacobian-vector product

δf =
∂f

∂x
δx (2)

evaluated at a point x where δx ∈ IRn is an arbitrary vector. The application of the linear operator in (2)
is required, for instance, in an iterative Krylov-Newton method for the solution of nonlinear equations
of the form f(x) = 0 where n = m. The basic linear operator in (2) can be used directly as the
operator application in a Krylov linear solver, such as GMRES, or can be used to generate an explicit
matrix given the structure of the function f(x). We generalize (2) to a form that involves the multiple
simultaneous application of this linear operator,

U =
∂f

∂x
S (3)

where S ∈ IRn×p and U ∈ IRm×p. Note that (3) can be used to generate the entire Jacobian matrix
∂f/∂x itself when S is the n-by-n identity matrix.

There are a variety of methods that can be used to compute the linear operator in (2) for vector
functions implemented in ANSI C++: 1) hand-coded symbolic derivatives (SD), 2) approximation by
finite differences (FD), 3) complex-step (CS) [Martins et al. 2003], and 4) automatic (or algorithmic)
differentiation (AD) [Griewank 2000]. The main focus of this work will be on the use of operator
overloading methods for AD, but first other methods are reviewed so that the advantages of hybrid
approaches can be fully appreciated.

The first method is referred to as symbolic differentiation (SD) and is based on analytically deriving
(2). The derivative expressions can either be derived and simplified by hand or by using tools such as
Maple1 or Mathematica2. This approach can yield very accurate and efficient derivative computations
but can require a tremendous amount of manual labor and can lead to implementation errors that can
degrade or destroy numerical performance [Vanden and Orkwis 1996]. Even derivatives of moderately
complicated functions can be difficult to implement so that good computer performance is achieved.
However, because SD results in accurate derivatives and potentially may be implemented in a com-
putational efficient manner, this approach can be used in combination with automatic differentiation
methods to produce excellent results, as discussed in later sections.

The second (and perhaps the most popular) method to compute an approximation to (2) is the use of
finite differencing (FD) of x → f(x). A one-sided first-order finite difference approximation to (2) at
a point x is given by

δf ≈ f(x + εδx)− f(x)

ε
(4)

where ε ∈ IR is the finite difference step length that should be selected to approximately minimize
the sum of O(ε) truncation errors and roundoff cancellation errors. This approach requires minimal
implementation effort because it depends only on the original function x→ f(x), the evaluation code, a
single vector function evaluation f(x+εδx), and several additional simple floating point operations. As
a consequence of this simplicity, it is also a computationally efficient calculation. Higher-order finite-
difference approximations can be used to reduce the truncation error. This allows larger finite difference
step sizes ε to decrease roundoff error and thereby reduces the overall approximation error but at greater

1Maple: http://www.maplesoft.com
2Mathematica: http://www.wolfram.com

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

4 · Roscoe Bartlett et al.

computational expense. For example, the fourth-order central finite difference approximation

δf ≈ f(x− 2εδx)− 8f(x− εδx) + 8f(x + εδx)− f(x + 2εδx))

12ε
(5)

can be applied, yielding O(ε4) truncation errors but at the cost of four evaluations of x → f(x). The
disadvantages of finite-difference approaches are that it is difficult to select a priori the optimal finite
difference step length ε such that the sum of truncation and roundoff errors are adequately minimized
and more accurate approximations, such as (5), significantly increase the computational cost. In gen-
eral, the unavoidable errors associated with finite-difference approaches can result in poorly performing
numerical methods.

A third approach to differentiate x → f(x) is the complex-step (CS) method [Squire and Trapp
1998]. This method relies on the concept of analytic extensions, through which the initial real f is
extended into the complex plane in a neighborhood of x. The properties of analytic functions allows
the approximation

δf ≈ Im[f(x + iε δx)]

ε
, (6)

where f stands for the extended function and Im denotes the imaginary value. Note that there is
no subtraction involved in this numerical approximation and thus the calculation suffers no loss of
significant digits in finite precision arithmetics. Approximation (6) requires f to be real analytic in
the complex plane at (x, 0), which is the case for most floating-point operations with a few important
exceptions, as discussed below.

By replacing the floating-point real data type doublewith a floating-point complex data type using a
type similar to std::complex<double> and using a very small ε (e.g. ε = 10−20) in equation (6),
accurate derivatives can be calculated, free from the classical cancellation effects. However, there are
disadvantages associated with the use of the complex step method. First, complex arithmetics are
significantly more expensive than real arithmetics as the result of the additional operations needed in
complex computations. Second, the technique requires all operations involved in calculating f(x) to be
real analytic. For instance, the absolute value function |z| =

√
a2 + b2 for a complex number z = a+ib

is not analytic nor the analytic extension of the real absolute value. The analytic extension is
√

z2, using
the principal branch of the square root. Another complex extension of the real absolute value that is
not the analytic one but that also gives the correct result using formula (6), is abs(a + ib) = a + ib
if a ≥ 0 and abs(a + ib) = −(a + ib) if a < 0. Third, the relational operators, such as < and
>, are typically not defined for complex numbers. For these reasons an existing C++ complex data
type designed for complex arithmetic, such as the standard C++ data type std::complex<>, cannot
be directly used for the CS method without making modifications to the underlying C++ code. The
alternative, as advocated in [Martins et al. 2003], is to define a new C++ complex data type that properly
defines the relational operators < and > and the absolute value function. The disadvantages of this
approach is that an existing, possibly optimized, C++ complex data type cannot be used for the purpose
of differentiation. The CS method, however, is conceptually similar to operator-overloading based
automatic differentiation and regardless of the above described limitations, can be utilized as a simple
verification of automatic differentiation calculations.

The fourth method for evaluating (2) is automatic differentiation (AD) [Griewank 2000], also re-
ferred to as algorithmic differentiation. Considerable advancements have been made since the initial
development of code lists in the late 1950s and the early 1960s [Beda et al. 1959; Moore 1979; Wengert
1964]. Source transformation tools such as ADIFOR [Bischof et al. 1992] and ADIC [Bischof et al.
1997] have been the primary focus for FORTRAN and C based codes. More recently, operator over-
loading methods using expression templates have been effectively applied to C++ codes [Cesare and
ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

Hybrid Differentiation Strategies in C++ · 5

Pironneau 2000]. The AD methodology mechanically applies the chain rule to all arithmetic operations
used within a function and exploits the fact that computer code is based on a sequence of elementary
arithmetic operations. By mechanically applying the chain rule to these basic operations within a func-
tion and applying the primitive rules for differentiation (e.g. (a + b)′ = a′ + b′, (a − b)′ = a′ − b′,
(ab)′ = a′b + ab′, (a/b)′ = (a′b − ab′)/(b2), sin(a)′ = cos(a)a′ etc.) accurate derivatives can be
calculated. Consequently, these methods are free of truncation and roundoff errors that plague FD
methods. Only standard floating point roundoff errors are present in AD. In fact, it can be shown that
the roundoff errors in the AD derivative computations are bounded by the roundoff errors involved in
computing x → f(x) [Griewank 2000]. Therefore, a simple way to ensure that the AD derivatives are
accurate is to ensure that the function evaluation is accurate.

AD can be performed in forward or reverse mode. The forward mode is the easiest to understand
and is the most efficient for computing derivatives of the form (2). The general process consist of
decomposing the function into elemental steps, applying simple derivative rules to individual operations
and then using the chain rule to provide a final derivative calculation of the overall function. The reverse
mode of automatic differentiation was introduced by Linnainmaa [1976] and later further exploited by
Speelpenning [1980] and Courty et al. [2003]. Our efforts have focused on the forward mode of AD and
therefore we do not consider reverse mode AD any further here. The forward mode of AD computes
both the function value and Jacobian-vector products of the form (3) for one or more input or seed
vectors. More specifically, forward-mode AD performs

(x, S)→
(

f(x),
∂f

∂x
S

)

(7)

where S ∈ IRn×p is known as the seed matrix. This form of AD only computes the function value f(x)
once and uses it to propagate p different columns of sensitivities through the forward differentiation
operator. The output is the Jacobian matrix ∂f/∂x when the seed matrix S is set to I . Commonly,
the Jacobian ∂f/∂x exhibits significant sparsity when n and m are large. A considerable body of
work [Griewank 2000, Chapter 7] has been devoted to developing methods that take advantage of the
sparsity structure. Here we will only consider the direct use of the forward-mode of AD to explicitly
form dense Jacobians when n and m are small. However, even in these smaller dimensional applications
of forward-mode AD, it may still be beneficial to take advantage of the structure of f(x) when the seed
matrix S = I is used to avoid derivative computations involving zeros.

There are two major approaches for implementing AD: source transformation and operator over-
loading. The source-transformation approach differentiates a function by parsing the code, performing
various analyzes and writing a set of source files with new definitions to implement AD expressions.
While the source transformation approach as been very successful and well implemented for languages
such as Fortran 77/90 [Bischof et al. 1992], [Faure 2005], [Hascoet 2004], [Courty et al. 2003], as of
the time of this writing, there are no such tools for differentiating ANSI/ISO C++. Therefore, we will
not consider source transformation tools any further in this paper. The operator overloading approach
for forward AD uses an abstract data-type to define all of the operators of a floating point scalar and
to carry along one or more derivative components. More specifically, one derivative component is
maintained for each column of the seed matrix S in (7). The operator overloading approach performs
elementary derivative computations in addition to the elementary function evaluation computations.
A straightforward implementation of forward-mode AD using operator overloading handles piecewise
defined functions by navigating through conditional branches (e.g. if statements), and when combined
with C++ function overloading, this approach can also be used to define rules to differentiate through
non-C++ or third-party function calls.

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

6 · Roscoe Bartlett et al.

Several different C++ classes use operator overloading to implement the forward mode of AD3. Al-
though these classes use different approaches, we focus on the forward AD (Fad) suite of C++ classes
[Cesare and Pironneau 2000]. These methods are templated on the scalar type and therefore allow great
flexibility to compute, for example, second and higher-order derivatives by nesting AD types. The Fad
classes use a C++ template programming technique called expression templates which results in assem-
bler code that eliminates many of the temporary objects commonly created by operator overloading in
C++. One of the classes (TFad) is also templated on the number of derivative components and there-
fore does not impose any runtime dynamic memory allocation. For the remainder of this paper, when
we refer to AD approaches in C++ we will always be referring to operator overloading C++ AD classes
and never will we consider possible source transformation approaches, again since they currently do
not exist.

As pointed out in [Martins et al. 2003], the CS and operator-overloading AD approaches share com-
mon features with respect to computing the single vector right-hand side form of (2). Both use operator
overloading, maintain two floating-point values (the function value and the single derivative compo-
nent) for each scalar variable, and can produce essentially analytic derivative values. However, AD
methods are more computationally efficient for a number of reasons. First, the CS method performs
unnecessary floating point operations, as in the case of a multiplication operation

(a + ia′)(b + ib′) = (ab− a′b′) + i(ab′ + a′b).

The i(ab′ + a′b) term maintains a derivative component but the elementary multiplication and subtrac-
tion of a′b′ are unnecessary; ab ≈ ab−a′b′ is essentially the value ab because ab� a′b′ and in floating
point the extra computation term will be entirely lost when |a′b′| > ε|ab| (where ε is machine preci-
sion). AD avoids these types of extraneous calculations. Second, specially designed AD types, such as
TFad, can carry multiple derivative components instead of just one which makes the computation of
(3) for p > 1 right-hand sides more efficient since the function value f(x) is only computed once and
amortized over the p multiple derivative components. In the case of the CS method, the function value
must be computed repeatedly for each of the p columns of S. Third, the use of multi-component AD
types can result in better memory performance (i.e. cache) since the expressions for f(x) are only ac-
cessed once. The CS method evaluates the function f(x) independently for each derivative component
p.

Although we have made a compelling case for AD as the preferred method, there is opportunity
for additional computational and implementational improvements by considering a hybrid strategy. If
we recognize that most production software codes consist of multiple levels of complexity, the ease
of implementation of AD and the computational efficiency of SD can be leveraged to strike a balance
between implementation effort and computational performance. Assuming an unlimited pool of skilled
developer resources, SD approaches should always be more computationally efficient (memory and
CPU time) than AD. This is because SD can simply mimic what AD does by performing exactly the
same operations and discarding unnecessary computations. Also, forward-mode operator overloading
AD computes the function value in addition to the derivatives as shown in (7) even though this function
value is usually not used (i.e. since it is already known). However, for general functions f(x), special-
ized SD approaches can be very difficult to implement and maintain (as the function f(x) changes due
to new requirements) even though in some cases, such as discretization methods for PDE, the high-
level structure of f(x) can be exploited fairly easily. Assuming the target software code consists of
multiple levels of complexity, a hybrid approach consists of symbolically deriving derivatives for those
portions of code that present acceptable levels of complexities and applying AD to those portions of the

3http://www.autodiff.org

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

Hybrid Differentiation Strategies in C++ · 7

code that present too much complexity. In this fashion, the hybrid strategy offers a trade-off between
developer time and computational performance.

3. HYBRID SYMBOLIC/AD APPROACHES FOR ELEMENT-BASED ASSEMBLY MODELS

The goal of this section is to describe levels of intrusive symbolic differentiation combined with auto-
mated methods that can be used to efficiently compute Jacobian-vector products (2). We first describe a
general model for the assembly of vector functions of the form (1), which encompasses many different
application areas from various discretization methods for PDEs (e.g. finite-element, finite-volume, dis-
continuous Galerkin etc.) to network models (e.g. electrical devices, utility networks, processing plants
etc.). We start with an abstract model, Algorithm 3.1, to establish the general methodology before
discussing more complicated issues.

ALGORITHM 3.1. GENERIC ELEMENT-BASED ASSEMBLY MODEL OF THE GLOBAL FUNCTION
f(x)

x→ f(x)

(1) Initialization
f = 0

(2) Element assembly

for e = 1 . . .Ne

Gather local variables
xe = Px,e x
Local computation
fe = fe(xe)
Global scatter and assembly
f = f + P T

f,e fe

The assembly model in Algorithm 3.1 shows a summation assembly of independent element compu-
tations. We use the term element in a general sense that is not restricted to just finite-element methods.
A relatively small number of variables are gathered for each element by the operation xe = Px,e x,
which we refer to as a “local” computation4. This vector of variables xe ∈ IRne is then used in a
relatively compact, local computation xe → f(xe) to form fe ∈ IRme . In general ne � n and
me � m. For each element, the local function fe is assembled for the entire computational domain
into f = f +P T

f,e fe, which is referred to as a “global” function. This assembly model uses abstractions
of mapping matrices Px,e, and Pf,e to represent the indexing of local/global variables and functions re-
spectively. These matrices contain only columns of identity or zeros depending on the formulation of
the problem. The non-transposed linear operator P performs global-to-local mappings as

vl = Pvg (8)

and the transposed operator P T performs the local-to-global mappings as

vg = P T vl. (9)

The element functions fe(xe) (e = 1 . . .Ne) may represent the physics computation and the dis-
cretization method of a PDE in which each computation can be processed independently and potentially

4Our term “local computation” or “element computation” is also know as an interface contraction in the AD research commu-
nity[Griewank 2000].

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

8 · Roscoe Bartlett et al.

in parallel. In the case of a finite-element PDE based simulation, the element loop in Algorithm 3.1
would involve both traditional internal element loops and one or more boundary loops. Typically, more
data than just xe is needed to define the functions fe(. . .) and this abstract model assumes that this data
is encapsulated in the mathematical functions fe(. . .) themselves. The assembly in Algorithm 3.1 can
be compactly written as

f(x) =

Ne
∑

e=1

P T
f,efe(Px,ex). (10)

This form will be useful in deriving the the various global derivative objects in the following section.

3.1 Global derivative computations

In this section, we consider how local element-wise derivative computations can be used with the ele-
ment assembly model in Algorithm 3.1 to compute the following global derivative objects:

(1) Sparse Jacobian matrix:

J =
∂f

∂x
(11)

(2) Jacobian-vector product:

δf =
∂f

∂x
δx (12)

These are the primary computations needed for a number of numerical algorithms including linear
and nonlinear equation solvers, stability analysis methods, uncertainty quantification, and optimization.
From the assembly model in (10), the Jacobian matrix is given by

∂f

∂x
=

Ne
∑

e=1

P T
f,e

∂fe

∂xe

Px,e. (13)

The assembly of the sparse Jacobian matrix J = ∂f/∂x follows directly from (13) and is given in
Algorithm 3.2.

ALGORITHM 3.2. ASSEMBLY OF THE GLOBAL JACOBIAN MATRIX

(x)→ J = ∂f
∂x

(1) Initialization
J = 0

(2) Element assembly

for e = 1 . . .Ne

J = J + P T
f,e

∂fe

∂xe
Px,e

Algorithm 3.2 requires that the element Jacobians ∂fe/∂xe be explicitly computed using TFad [Ce-
sare and Pironneau 2000]. The mapping matrices Px,e and Pf,b simply define how the local element
Jacobians ∂fe/∂xe are scattered and added into the global sparse Jacobian matrix J . Interfaces sup-
porting this type of mapping are common in many different types of codes. For the remainder of the
paper it is assumed the element-level Jacobians ∂fe/∂xe are computed at the current xe.
ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

Hybrid Differentiation Strategies in C++ · 9

The assembly of a Jacobian-vector product (2) follows directly from (13) as

δf =
∂f

∂x
δx

=

Ne
∑

e=1

P T
f,e

∂fe

∂xe

Px,eδx. (14)

and is restated in Algorithm 3.3.

ALGORITHM 3.3. ASSEMBLY OF THE GLOBAL JACOBIAN-VECTOR PRODUCT

(x, δx)→ δf = ∂f
∂x

δx

(1) Initialization
δf = 0

(2) Element assembly

for e = 1 . . .Ne

δxe = Px,eδx

δfe = ∂fe

∂xe
δxe

δf = δf + P T
f,eδfe

3.2 Storage and element derivative computations

The forward assembly Algorithm 3.3 can be used in one of two ways. The first general class will
be referred to as precomputed-storage approaches, which involve computing the Jacobian matrices
∂fe/∂xe upfront in a single loop and storing these element matrices in an element-wise data struc-
ture. The precomputed ∂fe/∂xe matrices can then be used to assemble Jacobian-vector products in
Algorithm 3.3 through local matrix-vector products. These repeated assembly loops only utilize the
precomputed ∂fe/∂xe matrices and therefore do not invoke the actual element functions fe(xe) them-
selves. The main advantage of these approaches are that they can result in dramatic reductions in cost
of repeated Jacobian-vector products. The disadvantages include potentially expensive upfront AD
computations and significant storage.

The second general class will be referred to as storage-free approaches and their main advantage
is that they do not involve any upfront computation or storage. Instead applications of forward AD
with fe(xe) are used to compute Jacobian-vector products. The disadvantage of these approaches over
precomputed-storage approaches is that the formation of each product assembly is more expensive
since the element functions fe(xe) must be called repeatedly using AD data types.

The global derivative assembly computations described in the preceding sections require the follow-
ing types of element-wise derivative computations:

(1) Element Jacobian matrix:

Je =
∂fe

∂xe

∈ IRme×ne (15)

(2) Element Jacobian-vector product:

δfe =
∂fe

∂xe

δxe ∈ IRme (16)

Note that storage-free approaches only require directional derivatives (16) for Algorithm 3.3. As
mentioned previously, we assume that the dimensions of each element computation ne and me are

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

10 · Roscoe Bartlett et al.

relatively small (e.g. order 100 or less) and that the mapping from the input element variables xe to
the output functions fe = fe(xe) is fairly dense (i.e. ∂fe/∂xe has mostly non-zero entries). This is
generally true for many different types of applications but there are some exceptions (e.g. chemically
reacting flows with lots of species and sparse reactions). Given that we are assuming that ne and me

are relatively small and xe → fe(xe) is fairly dense, these element-wise derivatives can be computed
most efficiently and conveniently through AD.

3.3 C++ implementation

In C++ the implementation of AD is especially easy if the functions fe(xe) (or the classes that imple-
ment these functions) are templated on the scalar types for the input arguments xe and the output vector
arguments for fe. For example, suppose the following non-member C++ function computes fe(xe, de):

void eval_ele_func(
const double x_e[],
const ElementData &d_e,
double f_e[]
);

where d e is an object that defines the rest of the element-specific data (e.g. nodal coordinates etc. for a
PDE discretization) for the element computation. To facilitate the use of automatic differentiation, the
above function can be templated as follows:

template<class Scalar>
void eval_ele_func(

const Scalar x_e[],
const ElementData &d_e,
Scalar f_e[]
);

Dense Jacobians and forward Jacobian-vector products can be efficiently computed using the forward
mode of AD and easily implemented using the templated class TFad<N,T>. This AD type is templated
both on the underlying scalar type T and the number of derivative components N. By templating on the
number of derivative components, all memory allocation can be performed on the stack and therefore
greatly improve performance by avoiding many small dynamic memory allocations that often occur
with operator overloaded AD tools. The applied use of TFad consists of instantiating the code for
fe(. . .) using TFad, initializing the input independent TFad variables appropriately, executing the
TFad-enabled function, and extracting the desired derivatives from the output arguments. By using
only one derivative component (i.e. TFad<1,double>), a Jacobian-vector product in (16) can be
cheaply computed at a cost of less than twice the storage and less than three times the flops of the
function evaluation. However, generating a Jacobian with respect to the N variables requires using N
derivative components (i.e. TFad<N,double>), and the resulting computation will, in theory, require
up to 3N more flops than the original function evaluation. However, certain operations, like square roots
and exponentials, can reduce the relative cost of each derivative component.

The following C++ functions give examples of the use of TFad for computing Jacobian matrices
(15) and Jacobian-vector products (16) for the templated function eval ele func(...).

//
// Compute an ‘‘element’’ (column-major) Jacobian matrix
//
void eval_ele_state_jac(

const double x_e[],

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

Hybrid Differentiation Strategies in C++ · 11

const ElementData &d_e,
double J_e[]
)

{
const int N_x_e = 10; // Number components in x_e[]
const int N_f_e = 5; // Number components in f_e[]
// Initialize AD argumets
TFad<N_x_e,double> ad_x_e[N_x_e];
TFad<N_x_e,double> ad_f_e[N_f_e];
for(int k = 0; k < N_x_e; ++k) {

ad_x_e[k].val() = x_e[k]; // Set independent var values
ad_x_e[k].diff(k); // Setup identity seed matrix

}
// Run function in forward mode to compute the entire state Jacobian
eval_ele_func(ad_x_e, d_e, ad_f_e);
// Extract state Jacobian matrix in column-major format
for(int k1 = 0; k1 < N_f_e; ++k1) for(int k2 = 0; k2 < N_x_e; ++k2)

J_y_e[k1+k2*N_f_e] = ad_f_e[k1].fastAccessDx(k2);
}

//
// Compute an ‘‘element’’ Jacobian-vector product
//
void eval_ele_jac_vec(
const double x_e[],
const ElementData &d_e,
const double delta_x_e[],
double delta_f_e[]
)

{
const int N_x_e = 10; // Number components in x_e[]
const int N_f_e = 5; // Number components in f_e[]
// Initialize AD argumets
TFad<1,double> ad_x_e[N_x_e], ad_f_e[N_f_e];
for(int k = 0; k < N_x_e; ++k) {

ad_x_e[k].val() = x_e[k]; // Set indepenent var values
ad_x_e[k].fastAccesDx(0) = delta_x_e[k]; // Load single seed vector

}
// Run function in forward mode
eval_ele_func(ad_x_e, d_e, ad_f_e);
// Extract state Jacobian-vector product
for(int k = 0; k < N_f_e; ++k) {

delta_f_e[k] = ad_f_e[k].fastAccessDx(0);
}

}

As shown in the above code examples, using TFad is straightforward provided the number of inde-
pendent variables is known at compile time. If the number of independent variables is not known at
compile time then the (slightly) less efficient class Fad can be used instead. While the element deriva-
tive computations described above used only AD at the element level, these derivative computations

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

12 · Roscoe Bartlett et al.

can also be performed using a hybrid symbolic/AD approach.

3.4 Levels of hybrid symbolic/AD differentiation

Here we introduce a classification system for different levels of hybrid differentiation strategies applied
to functions exhibiting hierarchical dependencies. Complicated models for f(x) will consist of higher
level calculations that depend on lower level calculations. Hybrid differentiation exploits this hierarchi-
cal structure by selecting the appropriate amount of symbolic differentiation combined with AD for the
remaining lower levels. Here we focus on the types of element assembly models shown in Algorithm
3.1 and focus on the different levels of symbolic/AD approaches for assembling δx→ (∂f/∂x)δx. For
each level, higher-level expressions are symbolically differentiated and then all remaining lower-level
expressions are differentiated using AD. These levels are described next and provide a classification of
our hybrid differentiation strategy for systematic performance comparisons of our particular example.

Level 0 denotes the application of directional AD to the global C++ function that computes x→ f(x)
without any concern to underlying structure. Level 0 requires the least amount of intrusive implemen-
tation, is therefore the easiest to use, and requires little knowledge of the structure of f(x). The dis-
advantage of this level is that the entire function x → f(x) needs to be templated on the scalar type,
which may not be practical for many codes. Only storage-free methods are used with this most basic
level.

Level 1 denotes the application of AD to the element level functions fe(xe). Both the storage-
free and precomputed-storage methods can be used for this level. In the case of the storage-free ap-
proach, directional AD is applied at the element assembly level to compute δxe → (∂fe/∂xe)δxe,
followed by an assembly of the global Jacobian-vector product as shown in Algorithm 3.3. In the case
of precomputed-storage approaches, the seed matrix is set to identity S = I and the element Jaco-
bians ∂fe/∂xe are precomputed using the forward mode of AD applied to fe(xe). These precomputed
element Jacobian matrices are then used to assemble subsequent Jacobian-vector products. The main
advantage of this level is that it requires little knowledge of the underlying structure of the expressions
or mathematical problem and only involves manipulating the basic assembly process. In addition, only
the element functions for fe(xe) and not the entire C++ function x → f(x), need be templated on the
scalar type.

Levels 2 and higher denotes symbolically differentiating into the element-level expressions fe(xe)
and applying AD on the remaining lower levels. Higher levels may involve symbolically differentiat-
ing deeper into the expressions for fe(xe). The number of meaningful levels depends on the nature
of the expressions for fe(xe). These higher-level hybrid symbolic/AD methods may be applied us-
ing precomputed-storage or storage-free approaches. The precomputed-storage approaches may avoid
storing the element Jacobians ∂fe/∂xe and instead may only store contributions to these Jacobians po-
tentially resulting in reduced storage and better performance. The level-2 approach described in Section
4 is an example of this. In general, for each increasing level of hybrid symbolic/AD method, the amount
of developer work will increase to implement and maintain additional code. However, these more in-
vasive methods offer reduced storage (i.e. for precomputed-storage methods) and improved runtime
(i.e. for precomputed-storage and storage-free).

Section 4 describes a concrete example for the use of several different levels of precomputed-storage
and storage-free symbolic/AD approaches and demonstrates the potential improvements in storage cost
and runtime performance for increasing levels of hybrid symbolic/AD methods.

4. FINITE-VOLUME DISCRETIZATION EXAMPLE

We present a concrete case study of various differentiation techniques and the application of different
levels of hybrid symbolic/AD approaches. Specifically, hybrid differentiation methods are demon-
ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

Hybrid Differentiation Strategies in C++ · 13

strated for a finite-volume discretization method of gas dynamics (Euler equations) which represents
an example of a two-loop element assembly model. The single loop of independent elements shown in
Algorithm 3.1 accurately applies to a large number of application areas such as finite-element methods
and different types of network models. However, a single independent loop over a set of elements is
not sufficient for certain discretization and application areas. One instance of this is the finite-volume
example described in this section where multiple coupled loops are required.

We exploit the hierarchical structure by first assuming very little and thereby exposing the entire
function evaluation to AD, followed by systematically considering more details of the function for
symbolic differentiation opportunities. We start with level 0, but as additional levels of differentiation
are considered, more details of the Euler equations will be revealed and discussed. This approach
will demonstrate the utility of the hybrid strategy and provide an improved approach to balancing
implementation effort against computational efficiency. In addition, we gloss over many details of the
discretization, and provide only enough algorithmic information to describe the use of the different
differentiation techniques. For additional details regarding computational fluid dynamics we refer the
interested reader to Blazek [2001].

4.1 Level 0 – the basic residual function

At the center of this finite-volume fluid flow code is the computation of the residual function

w → r(w) ∈ IR(nd+2)nN → IR(nd+2)nN (17)

where nd is the spatial dimension (nd = 2 or nd = 3), nN is the number of nodes in the computa-
tional mesh, and w ∈ IR(nd+2)nN is a vector of fluid states (density, velocity, pressure) in so-called
conservative form (i.e. the formulation is written in terms of the so-called conservative variables). Our
code implements the residual function (17), which is templated on the scalar types of each of the input
vectors. It should also be noted that more data than just the vector of state variables w is passed into
this function but in the context of AD, this data is irrelevant. Templating this C++ function on the scalar
type for w facilitates the straightforward use of the AD type TFad at all levels of computation. While
several derivative calculations are needed for gas dynamics, we focus on the computation of the state
Jacobian-vector product

δr =
∂r

∂w
δw (18)

which is needed by various solution strategies for the nonlinear equation r(w) = 0.
We start with applying AD to the entire residual evaluation function and thereby not requiring any

lower level details. The residual evaluation code for (17) is templated on the scalar type. Thus, if we can
assume that the function is first-order differentiable, then we do not need to know how the function (17)
is evaluated in order to compute (18) using the forward mode of AD5. The templated residual evaluation
function only needs to be instantiated with the scalar type TFad<1,double> for the input vector w

and the output vector r in order to compute (18) using the forward mode of AD. All of the other data
types for the passive input data (which are inconsequential for a level-0 method) are left as double.
This selective template instantiation prevents wasted derivative computations for inactive input data.

5While it is true that operator overloading C++ AD classes will correctly differentiate most C++ numerical operations, there are
cases, such as the poor use of conditionals, where it will yield the wrong result. While many of these cases are well known to the
AD community, the may not be as well know to the general numerical computing community. For example, applying AD to the
function Scalar func(Scalar x) { return (x==0.0 ? 0.0 : x); } will yield the wrong derivative
at x==0.0.

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

14 · Roscoe Bartlett et al.

In the following sections, we consider symbolically differentiating lower level calculations of the
residual evaluation (17). For each level of the symbolic differentiation process, we describe the compu-
tations inside of (17) in only enough detail to be able to apply AD strategically to the remaining lower
levels.

4.2 Level 1 - two-loop edge-based residual assembly

Implementing a basic level-1 hybrid symbolic/AD method requires knowledge about the discretization
method since this defines the element assembly process in Algorithm 3.1. In our code, the residual
assembly is accomplished through two loops over all edges in the computational mesh. The kind of
finite-volume discretization that we use forms a control volume around each mesh node, within which
the fluid state is assumed to be constant. The physics consists of balancing the flux of mass, momentum,
and energy along the edges that connect the control volumes. The edges may be considered as the basic
“elements” of this particular discretization. The finite-volume discretization described here uses an
unstructured meshing—with tetrahedra, hexahedra, or prisms—of the flow domain Ω. We denote by
V(Ω) the set of mesh nodes in the strict interior of the domain and by V(∂Ω) the nodes on the boundary
of the mesh. Thus, the set of all nodes is V(Ω) = V(Ω) ∪ V(∂Ω). Moreover, let Ni denote the set of
nodes that are nearest neighbors connected to node i by an edge. We associate a edge norm vector nij

with each directed edge i j−→ in the mesh. The normals are computed from a dual mesh [Blazek 2001],
and by construction,

nji = −nij . (19)

The normals are not of unit length and therefore embody both direction and magnitude. We define Vi

to be the volume of the control volume surrounding each mesh vertex i. Also note that the normals nij

are computed strictly from the geometry of the mesh and have no dependence on any state variables.
The residual in (17) is assembled in two edge-based loops as shown in Algorithm 4.1.

ALGORITHM 4.1. Two-loop edge-based residual assembly

Compute the residual vector r given the input vectors w, x, n and V .

Spatial gradient assembly
(1) Set gi ← 0 for each i ∈ V(Ω)

(2) For each edge
i j−→:

(a) gi ← gi + ĝ(Vi,wi,wj , +nij)

(b) gj ← gj + ĝ(Vj ,wj ,wi,−nij)

(3) + Boundary contributions

Residual assembly
(1) Set ri ← 0 for each i ∈ V(Ω)

(2) For each edge
i j−→:

(a) r̂ij = r̂(wi,wj , xi, xj ,gi,gj , nij)

(b) ri ← ri + r̂ij

(c) rj ← rj − r̂ij

(3) + Boundary contributions

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

Hybrid Differentiation Strategies in C++ · 15

A single templated C++ function assemble grad(...) is called for each edge in Algorithm 4.1
to simultaneously compute ĝ(Vi,wi,wj , +nij) and ĝ(Vj ,wj ,wi,−nij) in which some of the same
computations are shared. A single templated C++ function assemble resid(...) is called for
each edge in Algorithm 4.1 to compute r̂(wi,wj , xi, xj ,gi,gj , nij). While the treatment of boundary
conditions is critical to any discretization method, the calculation usually does not contribute signifi-
cantly to the computational cost of the state residual (17). Therefore, for the purposes of this discussion,
we will not discuss the details of boundary conditions, since our goal is to address the bulk computa-
tional work. Enforcement of boundary conditions would represent one or more element loops that
would contribute to the residual assembly.

4.3 Level 1 - state Jacobian-vector product assembly

By inspecting the edge-based assembly in Algorithm 4.1 and using the multi-variable chain rule, the
edge-based assembly loops for the Jacobian-vector product can be derived as shown in Algorithm 4.2.

ALGORITHM 4.2. Level-1 hybrid symbolic/AD Jacobian-vector product assembly

Compute δr =
∂r

∂w
δw given input vector δw

Linearized spatial gradient assembly
(1) Set δgi ← 0 for each i ∈ V(Ω)

(2) For each edge
i j−→:

(a) δgi ← δgi +
∂ĝij

∂wi

δwi +
∂ĝij

∂wj

δwj

(b) δgj ← δgj +
∂ĝji

∂wi

δwi +
∂ĝji

∂wj

δwj

(3) + Boundary contributions

Linearized residual assembly
(1) Set δri ← 0 for each i ∈ V(Ω)

(2) For each edge
i j−→:

(a) δr̂ij =
∂r̂ij

∂wi

δwi +
∂r̂ij

∂wj

δwj +
∂r̂ij

∂gi

δgi +
∂r̂ij

∂gj

δgj

(b) δri ← δri + δr̂ij

(c) δrj ← δrj − δr̂ij

(3) + Boundary contributions

In Algorithm 4.2, we use the notation
∂ĝij

∂wi

=
∂

∂w
ĝ(Vj ,w,wj , nij)|w=wi

,
∂ĝij

∂wj

=
∂

∂w
ĝ(Vj ,wi,w, nij)|w=wj

, (20)

∂r̂ij

∂wi

=
∂

∂w
r̂(w,wj , xi, xj ,gi,gj , nij)|w=wi

,
∂r̂ij

∂wj

=
∂

∂w
r̂(wi,w, xi, xj ,gi,gj , nij)|w=wj

,

(21)
∂r̂ij

∂gi

=
∂

∂g
r̂(wi,wj , xi, xj ,g,gj , nij)|g=gi

,
∂r̂ij

∂gj

=
∂

∂g
r̂(wi,wj , xi, xj ,gi,g, nij)|g=gj

.

(22)
ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

16 · Roscoe Bartlett et al.

The Jacobian-vector product assembly in Algorithm 4.2 constitutes a level-1 hybrid symbolic/AD
differentiation into the residual evaluation. At this level, AD only needs to be applied to the functions
ĝ(. . .) and r̂(. . .) that operate on objects associated with an edge and not the entire residual assembly
function for (17).

We consider two level-1 hybrid symbolic/AD strategies at the edge level for assembling the Jacobian-
vector product in expression (18). The first is the precomputed-storage approach and the second is
the storage-free approach. The precomputed-storage approach assembles Jacobian-vector products
by computing edge-based Jacobian sub-matrices and storing them. The storage-free level-1 approach
simply applies AD at the edge level to local edge-based functions ĝ(. . .) and r̂(. . .) using a single
directional derivative. The precomputed-storage level-1 approach initially applies AD at the edge-level
to explicitly compute local Jacobians, stores them, and then assembles the full Jacobian-vector product
by matrix-vector multiplication through loops over the edges, utilizing the pre-stored local Jacobians.

When using the precomputed-storage level-1 approach, the local edge-based gradient Jacobians

∂ĝij

∂wi

∈ IR(nd+2)nd×(nd+2),
∂ĝij

∂wj

∈ IR(nd+2)nd×(nd+2),

∂ĝji

∂wj

∈ IR(nd+2)nd×(nd+2),
∂ĝji

∂wi

∈ IR(nd+2)nd×(nd+2),
(23)

are computed. Without additional knowledge about the structure of ĝ(. . .), the storage for these Ja-
cobians requires 4((nd + 2)(nd)(nd + 2)) = 300 doubles per edge in 3D. However, these matrices
are actually diagonal, since the gradient is computed separately for each component of the conserva-
tive variables. The diagonal structure reduces the storage to 4((nd + 2)(nd)) = 4((3 + 2)(3)) = 60
doubles per edge in 3D. In addition, when using AD to generate these matrices, all of the variables
in either wi and wj can be perturbed simultaneously requiring just two columns in the seed matrix S.

After the Jacobians (23) have been computed, the edge-based residual Jacobians

∂r̂ij

∂wi

∈ IR(nd+2)×(nd+2),
∂r̂ij

∂wj

∈ IR(nd+2)×(nd+2),

∂r̂ij

∂gi

∈ IR(nd+2)×(nd+2)nd ,
∂r̂ij

∂gj

∈ IR(nd+2)×(nd+2)nd ,
(24)

are computed and stored in a loop over all edges. Computing these edge-based Jacobians requires
invoking forward AD (e.g. using TFad<40,double>) using a seed matrix with (nd +2)(2+2nd) =
40 columns in 3D (one column of identity for each component in wi, wj , gi and gj). These edge-based
Jacobians require the storage of 2(nd + 2)(nd + 2) + 2(nd + 2)(nd + 2)(nd) = 200 doubles per
edge in 3D. Therefore, the total storage for edge-based Jacobians is 60+200 = 260 doubles per edge
in 3D. This is a significant amount of storage but, as shown in Section 4.5, the use of pre-computed
Jacobians results in much more rapid evaluations of (18).

4.4 Level 2 - Jacobian-vector product

Symbolically differentiating deeper into the residual evaluation requires knowing more about the com-
putations at the edge level. The next level of structure of these computations is more complicated, but
great gains in speed and memory savings can be accomplished by symbolically differentiating deeper.
First we describe the edge-based spatial gradient function ĝ(. . .) and then the more complicated edge-
based Euler residual function r̂(. . .). The edge-based spatial gradient function ĝ(. . .) takes the form

ĝ(Vi,wi,wj , nij) =
1

2|Vi|
(wi + wj)⊗ nij . (25)

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

Hybrid Differentiation Strategies in C++ · 17

where ⊗ is a tensor product. The function ĝ(. . .) is linear in wi and wj so simply passing in δwi and
δwj into the assemble grad(...) function returns the linearized spatial gradients δgi and δgj .
Clearly AD is not needed for this computation.

The edge-based residual function r̂(. . .) uses a Roe dissipation scheme [Roe 1981] together with
linear reconstruction and a smooth limiter as follows:

r̂ij = r̂(wi,wj , xi, xj ,gi,gj , nij)

=
1

2

(

f(wi+
ij) · nij

)

+
1

2

(

f(wj−
ij) · nij

)

+ d
(

wi+
ij ,wj−

ij , nij

)

(26)

where:

w =

ρ
ρu

ρE

 , (27)

f(w) =

ρu

ρ u⊗ u + Ip
u(ρE + p)

 , where (28)

p = (γ − 1)(ρE − 1

2
|u|2),

wi+
ij = w+(wi,wj ,p

i
ij), (29)

w
j−
ij = w−(wi,wj ,p

j
ij), (30)

pi
ij = gi · (xj − xi) ∈ IR(nd+2), (31)

p
j
ij = gj · (xj − xi) ∈ IR(nd+2). (32)

(33)

Above, f(w) in (28) is the flux function of the Euler equations∇ · f(w) = 0. Moreover, ρ, u ∈ IRd,
p, and E are the density, velocity vector, pressure, and total energy per unit volume, respectively.
The vectors wi+

ij and w
j−
ij are the reconstructed left and right states. These reconstructions use the

spatial gradients gi and gj and are intended to increase the accuracy in regions where the solution is
smooth at little additional computational cost but at the expense of effectively increasing the stencil, or
footprint, of the operator. Embedded in the reconstruction functions w+(. . .) and w−(. . .) is a limiter
that is needed to handle the very steep gradients around shocks. Several different limiters can be used
and we used the van Albada limiter [van Albada B. van Leer and Jr. 1982] in our method. For the
purposes of this discussion the details of the limiter are not important, except that we use limiters that
are piecewise differentiable. Finally, d(. . .) is a dissipation term (of Roe type) that provides stability
and dominates the computational cost of the method. This term is algebraically complicated and would
be time-consuming to symbolically differentiate and implement.

From the form of r̂ij in (26), its linearization with respect to wi, wj , gi and gj immediately follows
as:

δr̂ij = Ji+
ij δwi+

ij + J
j−
ij δwj−

ij (34)
ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

18 · Roscoe Bartlett et al.

where

Ji+
ij =

1

2

∂
(

f i+
ij · nij

)

∂wi+
ij

+
∂d

(

wi+
ij ,wj−

ij , nij

)

∂wi+
ij

, (35)

J
j−
ij =

1

2

∂
(

f
j−
ij · nij

)

∂w
j−
ij

+
∂d

(

w
j−
ij ,wj−

ij , nij

)

∂w
j−
ij

, (36)

δwi+
ij =

∂wi+
ij

∂wi

δwi +
∂wi+

ij

∂wj

δwj +
∂wi+

ij

∂pi
ij

δpi
ij , (37)

δwj−
ij =

∂w
j−
ij

∂wi

δwi +
∂w

j−
ij

∂wj

δwj +
∂w

j−
ij

∂p
j
ij

δpj
ij , (38)

δpi
ij = δgi · (xi − xj), (39)

δpj
ij = δgj · (xj − xi), (40)

and where we have used a notation for the derivatives analogous to expressions (20)–(22).
We now describe how this additional knowledge of the structure of r̂(. . .) is used to implement

a level-2 hybrid symbolic/AD Jacobian-vector product more efficiently. The storage-free level-2 ap-
proach stores nothing up front and computes local Jacobian-vector products at the edge level symbol-
ically for all terms except for the dissipation term d(. . .). In all cases, we used AD with TFad<-
double> to perform all derivative computations with d(. . .). The precomputed-storage level-2 ap-
proach initially computes and stores the sub-Jacobian matrices

Ji+
ij ∈ IR(nd+2)×(nd+2) J

j−
ij ∈ IR(nd+2)×(nd+2)

∂wi+
ij

∂wi

∈ IR(nd+2)×(nd+2)
∂w

j−
ij

∂wj

∈ IR(nd+2)×(nd+2)

∂wi+
ij

∂wj

∈ IR(nd+2)×(nd+2)
∂w

j−
ij

∂wi

∈ IR(nd+2)×(nd+2)

∂wi+
ij

∂pi
ij

∈ IR(nd+2)×(nd+2)
∂w

j−
ij

∂p
j
ij

∈ IR(nd+2)×(nd+2)

(41)

and performs matrix-vector multiplication with these sub-matrices to assemble subsequent Jacobian-
vector products of the form (18). The sub-Jacobians for wi+

ij and w
j−
ij are diagonal since the reconstruc-

tions and the limiters are component-wise operations. All of these Jacobian evaluations were manually
derived and coded in C++ except for the dissipation term d(. . .). This scheme requires the storage of
2(nd + 2)(nd + 2) + 4(nd + 2) + 2(nd + 2) = 2(3 + 2)(3 + 2) + 4(3 + 2) + 2(3 + 2) = 80 doubles
per edge in 3D. Once these edge-based sub-Jacobians are computed, they are utilized in the edge-based
loops shown in Algorithm 4.3 to assemble the Jacobian-vector product (18).

ALGORITHM 4.3. Level-2 hybrid symbolic/AD Jacobian-vector product assembly

Compute δr =
∂r

∂w
δw given input vector δw

Linearized spatial gradient assembly
(1) Set δgi ← 0 ∀i ∈ V(Ω)

(2) For each edge
i j−→:

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

Hybrid Differentiation Strategies in C++ · 19

Method Precomputed-storage Storage-free
Level-0 - 0
Level-1 260 0
Level-2 80 0

Table I. Storage of edge-based Jacobian contributions in number of doubles per edge

(a) δgi ← δgi + ĝ(Vi, δwi, δwj , +nij)
(b) δgj ← δgj + ĝ(Vj , δwj , δwi,−nij)

(3) + Boundary contributions

Linearized residual assembly
(1) Set δri = 0 ∀i ∈ V(Ω)

(2) For each edge
i j−→:

(a) δrij ← Ji+
ij δwi+

ij + J
j−
ij δwj−

ij , where and δwi+
ij and δwj−

ij are computed using (37)-(40).
(b) δri ← δri + δrij ,
(c) δrj ← δrj − δrij ,

(3) + Boundary contributions

4.5 Results for various Jacobian-vector product assembly methods

Strategies to assemble Jacobian-vector products of the form (18) were discussed in the preceding sec-
tions and can be summarized as follows:

Level-0: Apply forward AD (i.e. using the seed matrix S = δw) at the global residual function
call level (i.e. AD the entire C++ function for (17)).
Level-1: AD is applied at the edge assembly level.

Precomputed-storage Level-1: AD is applied at the edge level to generate the sub-matrices
in (23) and (24); then the Jacobian-vector products are assembled with these sub-matrices
(Algorithm 4.2).
Storage-free Level-1: Directional AD is applied at the edge assembly level on the functions
ĝ(. . .) and r̂(. . .).

Level-2: Hybrid symbolic/AD is applied at the edge level by symbolically differentiating every-
thing except the dissipation term d(. . .), which is differentiated using AD.

Precomputed-storage Level-2: The sub-matrices in (41) are computed symbolically up front
with AD used only for the dissipation term d(. . .). Once these edge-level sub-matrices are
computed and stored then Jacobian-vector products are assembled (Algorithm 4.3).
Storage-free Level-2: Edge-level Jacobian-vector products are computed using symbolically
derived and hand-coded directional derivatives except for the dissipation term d(. . .) where
directional AD is used.

In this section we characterize the performance of the different levels of differentiation in addition to
the consideration of different storage strategies. Tables I and II give storage and computational results,
respectively, for precomputed-storage and storage-free level-0, level-1 and level-2 hybrid symbolic/AD
schemes used to compute Jacobian-vector products of the form (18).

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

20 · Roscoe Bartlett et al.

Method Precomputation Precomputed-storage Jac-vec Storage-free Jac-vec
Level-0 - - 3.14
Level-1 24.8 0.21 3.14
Level-2 4.73 0.19 1.93

Table II. Ratio of CPU time for residual Jacobian-vector product to residual evaluation for a small 3-D example with 25 mesh
points.

We used a small, non-physical test mesh so that all of the computations easily fit in cache. All
computations were run several times in a loop for a total of 1.0 CPU seconds in order to minimize the
effects of random noise in the timing values. These tests therefore compare the floating point efficiency
of the implemented code and not the quality of the data structures with respect to the memory-subsystem
usage (e.g. cache misses). CPU times reported for all derivative computation are relative to the time for
the residual evaluation that used the scalar type double. For all AD computations, the class TFad<-
double> was used as the scalar type for the active variables. All of the results in this section were
generated by compiling code using GNU g++ version 3.1 and Red Hat Linux 7.2 on a 1.7 GHz Intel
Pentium IV processor machine.

First we compare and contrast approaches that assemble Jacobian-vector products requiring no up-
front storage or computation. These storage-free strategies may be preferred when memory is at a pre-
mium. The storage-free Level-0 method required more CPU time by a factor of 3.14 in comparison to a
residual evaluation. The storage-free Level-0 is therefore only about 50% more expensive than a central
FD approximation and the Jacobian-vector products are accurate to machine precision. The storage-free
Level-1 method gives exactly the same relative CPU time of 3.14 as the storage-free Level-0 approach.
This should not be surprising since this approach performs almost exactly the same computations as
automatically differentiating the entire residual assembly function. In fact, in our C++ implementation,
the Jacobian-vector products for the storage-free Level-0 and storage-free Level-1 approaches gave the
same resultant vectors (to the last binary bit). The primary advantage of the storage-free Level-1 ap-
proach over the storage-free Level-0 approach is that the entire residual evaluation function does not
have to be templated on the scalar type.

The storage-free Level-2 approach exploits the gradient and residual computations and thereby re-
duces the relative CPU time from 3.14 to just 1.93. This is faster than a central FD and gives exact
Jacobian-vector products. However, this hybrid SD/AD approach is still almost twice as expensive as
one-sided finite differences. To obtain better performance we need to consider methods that perform
some initial computations up front. Consequently, we next compare and contrast the various levels of
precomputed-storage approaches that compute and store Jacobian sub-matrices at the edge level and
then uses them to assemble repeated Jacobian-vector products. These methods require more storage
but can significantly improve the computational performance of repeated Jacobian-vector product as-
semblies.

The precomputed-storage Level-1 approach requires 24.8 times the cost of the residual assembly in
order to precompute the edge-level matrices and stores 260 doubles per edge. Once these matrices
are computed and stored, the relative CPU time for each subsequent Jacobian-vector product assembly
is only 0.21 times the cost of a residual assembly. This is almost five times faster than a one-side
FD approximation. Note that the relative CPU time of 24.8 is actually quite impressive considering
that TFad<40,double> is used on the function r̂(. . .) with 40 derivative components. Therefore,
the cost for each derivative component is less than the cost of the function evaluation. The relative
CPU time of 24.8 for the creation of these matrices, however, may still seem too high but in many
situations where Jacobian-vector products are performed at a particular point w (such as in an iterative
ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

Hybrid Differentiation Strategies in C++ · 21

linear solver like GMRES in a Krylov–Newton method) the overall reduction in runtime over even one-
side FDs can be significant. If the memory capacity is limited or the reduction in CPU is insufficient,
additional symbolic differentiation can be considered where other Jacobian sub-matrices at the edge
level are stored.

Now consider results for the precomputed-storage Level-2 approach. The Jacobian sub-matrices
for the dissipation term d(. . .) in (35) and (36) are computed using TFad<10,double> (using 10
columns in the seed matrix). This approach results in dramatic reductions in relative CPU time for pre-
computing edge-based Jacobian sub-matrices and storage of these sub-matrices over the precomputed-
storage Level-1 approach. The relative CPU time is reduced from 24.8 to 4.73 and the storage for the
Jacobian sub-matrices is reduced from 260 to 80 doubles per edge. However, we only see a minor
reduction in relative CPU time from 0.21 to 0.19 for subsequent Jacobian-vector product assemblies.
Even though the reduction in Jacobian-vector product computations is not significantly reduced, the
dramatic reductions in upfront cost and storage makes this scheme more attractive.

4.6 Comparison of differentiation strategies for the dissipation term

We also experimented with several different approaches to automatically differentiate the Roe-type
dissipation term d(. . .) shown in (26) and also attempted to derive the Jacobians symbolically. It re-
quired approximately a month to derive expressions for the Jacobians of d(. . .) in (35) and (36) and
after approximately two weeks of implementation the resulting hand-derived and hand-coded Jacobian
evaluation C++ code was 2.5 times slower than the automatically generated AD code (using TFad<-
double>) and was not giving the correct Jacobians. The likely reason for the degradation in per-
formance of the hand-coded Jacobian evaluation function is that there are many common expressions
involved in the Jacobian entries that are automatically exploited in the AD code that were not exploited
in the hand-coded derivative function. The attempt to symbolically derive and implement these Jaco-
bians was therefore abandoned to avoid expending large amounts of additional, open-ended developer
effort.

Here, results are presented for the use of several different automated strategies to compute the Jaco-
bian of the dissipation term with respect to one of the states ∂d/∂wi ∈ IR(nd+2)×(nd+2) (nd = 3, then
the Jacobian is of size 5 × 5). Note that the computation of both ∂d/∂wi and ∂d/∂wj are used in
the precomputed-storage level-2 method described above. However, the computation of only ∂d/∂wi

involves many of the same issues as computing both these Jacobians together. Table III gives operation
counts for the computation of ∂d/∂wi using one-sided finite difference (FD), automatic differentia-
tion (AD) using TFad<5,double>, and the complex-step (CS) using std::complex<double-
>. These operation counts were generated automatically using a templated abstract data type called
ScalarFlopCounter. Operation counts do not completely determine the CPU compute time of
a code as many other issues must be considered, even for cache-resident data [Goedecker and Hoisie
2001]. However, these operation counts provide a basis for comparison of the various differentiation
methods and for runtime performance using different compilers and different platforms. The difference
in the ratios of relative operation counts and relative CPU times give a measure of how well a particular
C++ compiler deals with abstract data types (that is the basis for the AD and CS methods in C++) with
respect to built-in data types.

A number of interesting observations can be made in regard to the numerical results in Table III:

(1) The dissipation term is 3.2 times more expensive than the two flux calculations required by the
residual evaluation. We suspect the CPU times do not reflect the same ratio because the dissipa-
tion terms involves five square roots which are typically more expensive in comparison to other
functions of similar operation counts.

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

22 · Roscoe Bartlett et al.

Operation f
i+
i

dij FD ∂d/∂wi AD ∂d/∂wi CS ∂d/∂wi

= 14 65 446 819 2018
+ 4 29 174 459 714

+= 6 24 149 114 609
unary + 0 7 42 3 22

- 1 14 115 85 620
-= 0 0 0 0 150

unary - 0 9 54 59 89
* 15 102 637 947 2707

*= 0 5 30 5 65
/ 3 8 49 48 134

/= 0 0 0 0 40
sqrt 0 5 30 5 50
abs 0 0 0 0 75
> 0 3 18 3 38
< 0 3 18 3 53

== 0 0 0 0 45
all ops 43 274 1762 2550 7429
rel ops 0.16 1.0 6.4 9.3 27.1

rel CPU 0.11 1.0 6.5 10.9 19.5

Table III. Operation counts for the computation of the flux function f
i+
i

= f(wi+
ij

) · nij , the dissipation term dij and the
5× 5 Jacobian ∂d/∂wi using one-sided finite difference (FD), automatic differentiation (AD) using TFad<double>, and the
complex-step (CS) using std::complex<double>. These results were obtained using g++ 3.2.2 on the same Red Hat Linux
7.2 platform shown in Table IV.

(2) The actual operation counts for ∂d/∂wi are less than predicted by a total operation count of the
dij evaluation, because the code was carefully templated to avoid derivatives of inactive variables.

(3) The relative operation count and the relative CPU time for the FD computation of ∂d/∂wi were
nearly identical at 6.4 and 6.5 respectively. This suggests that the relative operation count in the FD
case is a very good prediction of the relative CPU time, which seems reasonable since the majority
of the computation in the FD method is performed in the same C++ function that computes dij .

(4) The AD computation of ∂d/∂wi requires 1.44 times the operations of the the FD method. The
increased operation count is typical and expected for an AD method. Note that some individual
derivative operations are more efficient than their function evaluations, in particular the square root
operation.

(5) As expected the CS method results in a significant increase in operation count over the AD method,
as a result of extra (unnecessary) floating-point computations and recomputations of the value of
the dissipation function d repeatedly for each separate column of ∂d/∂wi.

These results are for a specific compiler on a particular platform, but it is important to evaluate
the ability of different compilers to implement efficient C++ code for derived types and expression
templates. Table IV shows relative CPU times on a variety of platforms for computing the 5 × 5
Jacobian ∂d/∂wi using the FD, AD, and CS methods.

The relative CPU time of performing one-side finite differences varies by as much as 6.2 for ICL to
7.4 for SGI even through exactly the same C++ source code was compiled on each of these platforms
with similar optimization levels. A relative CPU time of slightly greater than 6.0 for the one-sided
finite difference would be ideal since six evaluations of d(. . .) are performed (one for the base point
and five others for each perturbation in wi). The additional overhead is incurred in performing the
ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

Hybrid Differentiation Strategies in C++ · 23

Compiler/platform One-sided finite differences Automatic differentiation Complex step
g++ 7.0 7.5 39.9
kcc 7.0 12.5 31.6
ICL 6.2 10.3 59.3
SGI 7.4 19.5 39.0
cxx 6.7 57.4 197.5

Platforms
g++ : GNU g++ version 3.1, Red Hat Linux 7.2, 1.7 GHz Intel P IV
kcc : KAI C++ version 4.0e, Red Hat Linux 7.2, 1.7 GHz Intel P IV
ICL : Intel C++ version 5.0, MS Windows 2000, 1.0 GHz Intel P IV
SGI : MipsPro C++ version 7.3.1
cxx : Compaq C++ version, Sandia National Laboratories Cplant

Table IV. Relative CPU times for the computation of the 5 × 5 Jacobian of the dissipation term ∂d/∂wi using one-sided finite
difference (FD), automatic differentiation (AD) using TFad<double> and the complex-step (CS) using std::complex<-
double>. All CPU times are relative to evaluation of the dissipation term d(. . .).

vector subtraction and scaling as shown in (4).
These results also show that the CS method using std::complex<double> is much less efficient

than the AD method using TFad<5,double> on all of these platforms (as predicted by the relative
increase in total operations). The greatest disparity between AD and CS occurred with the ICL compiler
where the relative CPU time for CS was almost six times greater than for AD. The difference between
the relative CPU times for CS and AD was almost twice that what would be predicted by the relative
operation counts.

Finally, a large difference in performance is observed for the handling of the scalar types TFad<-
double> and std::complex<double> in comparison to double. The relative performance of
TFad<double> varies from 7.5 for g++ 3.1 to 57.4 for cxx. The relative performance of 7.5 for g++
3.1 was very good considering that the relative total operation count is 9.3 (as shown in Table III). The
AD code actually exceeds what would be predicted from the ideal operation count in this one case.

5. CONCLUSIONS

A hybrid differentiation strategy is presented to compute Jacobian-vector products for an ANSI C++ im-
plementation of a finite-volume discretization of the Euler equations. Non-invasive and invasive hybrid
symbolic/AD strategies that pre-compute and store Jacobian sub-matrices at the mesh-object level and
then assemble Jacobian-vector products may result in computations nearly five times faster than one-
sided finite differences. In addition, these derivative computations are accurate to machine precision.
No-storage use of AD at the edge level can result in derivative computations that are very competitive in
speed with FD methods and require little knowledge of the actual edge-level computations. However,
exploiting the structure of the computations at a lower level and combining symbolically derived and
coded derivatives with AD resulted in significant improvements in CPU time and storage. Conclusions
and observations are summarized as follows:

(1) Hybrid symbolic/AD approaches are well suited to discretization methods for PDEs due to their
structure. Hybrid symbolic/AD methods can result in very accurate and affordable derivative com-
putations without having to rewrite an entire code. Instead, differentiation tools can be applied at
the mesh object level in a general way.

(2) Computing Jacobian-vector products and performing like computations by applying AD at the
mesh object level generally does not require sophisticated AD features such as the special sparsity

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

24 · Roscoe Bartlett et al.

and check-pointing handling for storage management that are the focus of several research groups
[Bischof et al. 1997], [Griewank et al. 1996].

(3) One of the main advantages of the hybrid strategy is the flexibility with which one can apply AD so
that the right balance between implementation effort and computational efficiency can be achieved.

(4) Any new or existing C++ project that is considering derivative computations should template on
the scalar type as much computational C++ code as possible. Templating code by the scalar type
not only allows the use of AD but other techniques such as interval analysis, extended precision
arithmetic, complex arithmetic, and uncertainty quantification.

(5) Symbolic differentiation is not always efficient or affordable even though theoretically such an
approach should result in the best quality differentiation code. In many cases, too much imple-
mentation effort is necessary to provide symbolic derivatives that are more efficient than those
generated by AD.

(6) The complex-step method for differentiation is analogous to automatic differentiation but less ef-
ficient (and slightly less accurate). Therefore, since many good AD classes for C++ are available,
the complex-step method for the computation of derivatives should never be seriously considered
for production use in ANSI C++ codes. However, as an extra validation approach, the complex-
step method may be very reasonable. In other languages that lack support for operator overloading
but yet support complex arithmetic, such as Fortran 77, the complex-step method is a much more
attractive alternative.

REFERENCES

BEDA, L. M., KOROLEV, L. N., SUKKIKH, N. V., AND FROLOVA, T. S. 1959. Programs for automatic differentiation for the
machine BESM. Tech. rep., Institute for Precise Mechanics and Computation Techniques, Academy of Science.

BISCHOF, C., CARLE, A., CORLISS, G., GRIEWANK, A., AND HOVLAND, P. 1992. ADIFOR - generating derivative codes
from Fortran programs. Scientific Programming 1, 1–29.

BISCHOF, C. H., ROH, L., AND MAUER, A. 1997. ADIC — An extensible automatic differentiation tool for ANSI-C. Software–

Practice and Experience 27, 12, 1427–1456.
BLAZEK, J. 2001. Computational Fluid Dynamics: Principles and Applications. Elsevier.

CESARE, N. AND PIRONNEAU, O. 2000. Flow control problem using automatic differentiation in C++. Tech. rep., Unversite
Pierre et Marie Curie, LAN-UPMC report 99013.

COURTY, F., DERVIEUX, A., KOOBUS, B., AND HASCOET, L. 2003. Reverse automatic differentiation for optimum design:
from adjoint state assembly to gradient computation. Optimization Methods and Software 18, 5, 615–627.

FAURE, C. 2005. An auomatic differentiation platform: Odyssee. Future Generation Computer Systems 21, 8, 1391–1400.

GIERING, R. AND KAMINSKI, T. 1998. Recipies for adjoint code construction. ACM Trans. Math. Software 24, 4, 437–474.
GOEDECKER, S. AND HOISIE, A. 2001. Performance Optimization of Numerically Intensive Codes. SIAM.

GRIEWANK, A. 2000. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. SIAM.

GRIEWANK, A., JUEDES, D., AND UTKE, J. 1996. ADOL–C, a package for the automatic differentiation of algorithms written
in C/C++. ACM Trans. Math. Software 22, 2, 131–167.

HASCOET, L. 2004. Tapenade: a tool for automatic differentiation of programs. In P. Neittaanm aki, T. Rossi, S. Korotov,

E. Onate, J. Periaux, and D. Knorzer, editors, 4th European Congress on Computational Methods in Applied Sciences and

Engineering (ECCOMAS) 2.

LINNAINMAA, S. 1976. Taylor expansion of the accumulated rounding errror. BIT (Nordisk Tidskrift for Informationsbehan-

dling) 16, 146–160.

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

Hybrid Differentiation Strategies in C++ · 25

MARTINS, J. R. R. A., STURDZA, P., AND ALONSO, J. J. 2003. The complex-step derivative approximation. ACM Trans.

Math. Softw. 29, 3, 245–262.
MOORE, R. 1979. Methods and applications of interval analysis. SIAM.
ROE, P. 1981. Approximate riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics 43,

357–372.
SPEELPENNING, B. 1980. Compiling fast partial derivatives of functions given by algorithms. Ph.D. thesis, Department of

Computer Science, University of Illinois at Urbana-Champaign.
SQUIRE, W. AND TRAPP, G. 1998. Using complex variables to estimate derivatives of real functions. SIAM Rev. 40, 1, 110–112.
VAN ALBADA B. VAN LEER, G. AND JR., W. R. 1982. A comparative study of computational methods in cosmic gas dynamics.

Astronomy and Astrophysics 108, 76–84.
VANDEN, K. AND ORKWIS, P. 1996. Comparison of numerical and analytical jacobians. AIAA Journal 34, 6, 1125–1129.
WENGERT, R. E. 1964. A simple automatic derivative evaluation program. Comm. ACM 7, 8, 463–464.

Received: ???; revised: ???; accepted: ???

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

